- Information
- Symbol: OsLUX,OsPCL1
- MSU: LOC_Os01g74020
- RAPdb: Os01g0971800
- Publication
- Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis, 2020, EMBO J.
- Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa, 2007, Plant Cell Physiol.
- A clock regulatory module is required for salt tolerance and control of heading date in rice, 2021, Plant Cell Environ.
- LUX ARRHYTHMO Interacts With ELF3a and ELF4a to Coordinate Vegetative Growth and Photoperiodic Flowering in Rice., 2022, Front Plant Sci.
- The evening complex integrates photoperiod signals to control flowering in rice., 2022, Proc Natl Acad Sci U S A.
- The clock component OsLUX regulates rice heading through recruiting OsELF3-1 and OsELF4s to repress Hd1 and Ghd7., 2022, J Adv Res.
- OsLUX Confers Rice Cold Tolerance as a Positive Regulatory Factor., 2023, Int J Mol Sci.
-
Genbank accession number
- Key message
- Non-functional alleles of OsLUX extremely extended vegetative phase, leading to photoperiod-insensitive late flowering and great increase of grain yield
- OsLUX displayed an obvious diurnal rhythm expression with the peak at dusk and promoted rice flowering via coordinating the expression of genes associated with the circadian clock and the output integrators of photoperiodic flowering
- OsLUX combined with OsELF4a and OsELF3a or OsELF3b to form two ECs, of which the OsLUX-OsELF3a-OsELF4a was likely the dominant promoter for photoperiodic flowering
- RESULTS: The circadian gene OsLUX encodes an MYB family transcription factor that functions as a vital circadian clock regulator and controls rice heading
- OBJECTIVES: In this study, we aimed to confirm the role of OsLUX in flowering time regulation in rice
- OsELF3-1 contributes to the translocation of OsLUX to the nucleus, and a compromised flowering phenotype results upon mutation of any component of the OsEC complex
- OsLUX was found to be specifically expressed in leaf blades and upregulated by both cold stress and circadian rhythm
- Furthermore, overexpressing OsLUX upregulated the expression levels of oxidative stress-responsive genes, which improved reactive oxygen species (ROS) scavenging ability and enhanced tolerance to chilling stress
- Promoter analysis showed that the OsLUX promoter contains two dehydration-responsive element binding (DREB) motifs at positions -510/-505 (GTCGGa) and -162/-170 (cCACCGccc), which indicated that OsDREB1s and OsDREB2s probably regulate OsLUX expression by binding to the motif to respond to cold stress
- These results demonstrate that OsLUX serves as a positive regulatory factor of cold stress and that overexpressing OsLUX could be used in rice breeding programs to enhance abiotic stress tolerance
- Overexpressing OsLUX resulted in increased cold tolerance and reduced ion leakage under cold-stress conditions during the seedling stage
- In contrast, the knockout of OsLUX decreased seedling cold tolerance and showed higher ion leakage compared to the wild type
- OsLUX Confers Rice Cold Tolerance as a Positive Regulatory Factor.
- Connection
- OsELF4a, OsLUX~OsPCL1, A clock regulatory module is required for salt tolerance and control of heading date in rice, Here, we identify a rice ternary repressive protein complex composed of OsELF4a, OsELF3-1 and OsLUX, which was designated as OsEC1 in analogy to a similar complex in Arabidopsis
- OsELF4a, OsLUX~OsPCL1, A clock regulatory module is required for salt tolerance and control of heading date in rice, OsELF4a physically interacts with OsELF3-1 and OsELF3-2 in nucleus, whilst OsELF3-1 rather than OsELF3-2 strongly interacts with OsLUX, a Myb-domain containing transcriptional factor
- Hd17~Ef7~OsELF3-1~OsELF3.1~OsELF3, OsLUX~OsPCL1, A clock regulatory module is required for salt tolerance and control of heading date in rice, Here, we identify a rice ternary repressive protein complex composed of OsELF4a, OsELF3-1 and OsLUX, which was designated as OsEC1 in analogy to a similar complex in Arabidopsis
- Hd17~Ef7~OsELF3-1~OsELF3.1~OsELF3, OsLUX~OsPCL1, A clock regulatory module is required for salt tolerance and control of heading date in rice, OsELF4a physically interacts with OsELF3-1 and OsELF3-2 in nucleus, whilst OsELF3-1 rather than OsELF3-2 strongly interacts with OsLUX, a Myb-domain containing transcriptional factor
- OsEF3~OsELF3-2~OsELF3.2, OsLUX~OsPCL1, A clock regulatory module is required for salt tolerance and control of heading date in rice, OsELF4a physically interacts with OsELF3-1 and OsELF3-2 in nucleus, whilst OsELF3-1 rather than OsELF3-2 strongly interacts with OsLUX, a Myb-domain containing transcriptional factor
- OsELF4a, OsLUX~OsPCL1, LUX ARRHYTHMO Interacts With ELF3a and ELF4a to Coordinate Vegetative Growth and Photoperiodic Flowering in Rice., OsLUX combined with OsELF4a and OsELF3a or OsELF3b to form two ECs, of which the OsLUX-OsELF3a-OsELF4a was likely the dominant promoter for photoperiodic flowering
- OsELF4a, OsLUX~OsPCL1, LUX ARRHYTHMO Interacts With ELF3a and ELF4a to Coordinate Vegetative Growth and Photoperiodic Flowering in Rice., Unlike OsLUX, loss OsELF4a displayed a marginal influence under short-day (SD) condition, but markedly delayed flowering time under long-day (LD) condition
- Ghd7, OsLUX~OsPCL1, The clock component OsLUX regulates rice heading through recruiting OsELF3-1 and OsELF4s to repress Hd1 and Ghd7., The clock component OsLUX regulates rice heading through recruiting OsELF3-1 and OsELF4s to repress Hd1 and Ghd7.
- Hd1, OsLUX~OsPCL1, The clock component OsLUX regulates rice heading through recruiting OsELF3-1 and OsELF4s to repress Hd1 and Ghd7., The clock component OsLUX regulates rice heading through recruiting OsELF3-1 and OsELF4s to repress Hd1 and Ghd7.
- Hd17~Ef7~OsELF3-1~OsELF3.1~OsELF3, OsLUX~OsPCL1, The clock component OsLUX regulates rice heading through recruiting OsELF3-1 and OsELF4s to repress Hd1 and Ghd7., The clock component OsLUX regulates rice heading through recruiting OsELF3-1 and OsELF4s to repress Hd1 and Ghd7.
- Hd17~Ef7~OsELF3-1~OsELF3.1~OsELF3, OsLUX~OsPCL1, The clock component OsLUX regulates rice heading through recruiting OsELF3-1 and OsELF4s to repress Hd1 and Ghd7., OsLUX forms the OsEC (OsELF4s-OsELF3-1-OsLUX) complex by recruiting OsELF3-1 and OsELF4s, which were required to regulate rice heading
- Hd17~Ef7~OsELF3-1~OsELF3.1~OsELF3, OsLUX~OsPCL1, The clock component OsLUX regulates rice heading through recruiting OsELF3-1 and OsELF4s to repress Hd1 and Ghd7., OsELF3-1 contributes to the translocation of OsLUX to the nucleus, and a compromised flowering phenotype results upon mutation of any component of the OsEC complex
Prev Next