- Information
- Symbol: OsNAS1
- MSU: LOC_Os03g19427
- RAPdb: Os03g0307300
- Publication
- Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa, 2011, J Exp Bot.
- Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants, 2006, J Exp Bot.
- A receptor-like protein RMC is involved in regulation of iron acquisition in rice, 2013, J Exp Bot.
- Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron, 2003, The Plant Journal.
- The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes, 2009, Plant J.
- OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil, 2011, Plant Mol Biol.
- Comparative transcriptome profile analysis of rice varieties with different tolerance to zinc deficiency, 2020, Plant Biol (Stuttg).
- Genbank accession number
- Key message
- RNA interference of OsIRO2 in transgenic rice showed that ethylene acted via this transcription factor to induce the expression of OsNAS1, OsNAS2, OsYSL15, and OsIRT1
- Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron
- In Fe-deficient plants, OsNAS1 and OsNAS2 were expressed in the vascular bundles of green leaves and in all cells of leaves showing severe chlorosis
- OsNAS1 and OsNAS2 transcripts were detected in Fe-sufficient roots but not in leaves, and levels of both increased markedly in both roots and leaves in response to Fe deficiency
- Promoter-GUS analysis revealed that OsNAS1 and OsNAS2 were expressed in Fe-sufficient roots in companion cells and pericycle cells adjacent to the protoxylem
- With Fe deficiency, OsNAS1 and OsNAS2 expression extended to all root cells along with an increase in phytosiderophore secretion
- Connection
- OsIRT1, OsNAS1, Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa, RNA interference of OsIRO2 in transgenic rice showed that ethylene acted via this transcription factor to induce the expression of OsNAS1, OsNAS2, OsYSL15, and OsIRT1
- OsIRT1, OsNAS1, Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa, Gene expression analysis of rice iron-regulated bHLH transcription factor OsIRO2, nicotianamine synthases 1 and 2 (NAS1 and NAS2), yellow-stripe like transporter 15 (YSL15) and iron-regulated transporter (IRT1) indicated that ethylene caused an increase in transcript abundance of both Fe (II) and Fe (III)-phytosiderophore uptake systems
- OsNAS1, OsNAS2, Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa, RNA interference of OsIRO2 in transgenic rice showed that ethylene acted via this transcription factor to induce the expression of OsNAS1, OsNAS2, OsYSL15, and OsIRT1
- OsNAS1, OsNAS2, Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa, Gene expression analysis of rice iron-regulated bHLH transcription factor OsIRO2, nicotianamine synthases 1 and 2 (NAS1 and NAS2), yellow-stripe like transporter 15 (YSL15) and iron-regulated transporter (IRT1) indicated that ethylene caused an increase in transcript abundance of both Fe (II) and Fe (III)-phytosiderophore uptake systems
- OsIRO2~OsbHLH056, OsNAS1, Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa, Gene expression analysis of rice iron-regulated bHLH transcription factor OsIRO2, nicotianamine synthases 1 and 2 (NAS1 and NAS2), yellow-stripe like transporter 15 (YSL15) and iron-regulated transporter (IRT1) indicated that ethylene caused an increase in transcript abundance of both Fe (II) and Fe (III)-phytosiderophore uptake systems
- OsIRO2~OsbHLH056, OsNAS1, Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa, RNA interference of OsIRO2 in transgenic rice showed that ethylene acted via this transcription factor to induce the expression of OsNAS1, OsNAS2, OsYSL15, and OsIRT1
- OsNAS1, OsYSL15, Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa, RNA interference of OsIRO2 in transgenic rice showed that ethylene acted via this transcription factor to induce the expression of OsNAS1, OsNAS2, OsYSL15, and OsIRT1
- OsNAS1, OsYSL15, Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa, Gene expression analysis of rice iron-regulated bHLH transcription factor OsIRO2, nicotianamine synthases 1 and 2 (NAS1 and NAS2), yellow-stripe like transporter 15 (YSL15) and iron-regulated transporter (IRT1) indicated that ethylene caused an increase in transcript abundance of both Fe (II) and Fe (III)-phytosiderophore uptake systems
- OsIRO2~OsbHLH056, OsNAS1, OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil, Using promoter-GUS transformants, we showed that OsIRO2 is expressed throughout a plant’s lifetime in a spatially and temporally similar manner to the genes OsNAS1, OsNAS2 and TOM1, which is involved in Fe absorption and translocation
- OsNAS1, OsNAS2, OsIRO2 is responsible for iron utilization in rice and improves growth and yield in calcareous soil, Using promoter-GUS transformants, we showed that OsIRO2 is expressed throughout a plant’s lifetime in a spatially and temporally similar manner to the genes OsNAS1, OsNAS2 and TOM1, which is involved in Fe absorption and translocation
- OsIRO2~OsbHLH056, OsNAS1, Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants, Sequences similar to the OsIRO2-binding sequence were found upstream of several genes that are involved in Fe acquisition, such as OsNAS1, OsNAS3, OsIRT1, OsFDH, OsAPT1, and IDS3
- OsAPT1~APRT, OsNAS1, Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants, Sequences similar to the OsIRO2-binding sequence were found upstream of several genes that are involved in Fe acquisition, such as OsNAS1, OsNAS3, OsIRT1, OsFDH, OsAPT1, and IDS3
- OsNAS1, OsNAS3, Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants, Sequences similar to the OsIRO2-binding sequence were found upstream of several genes that are involved in Fe acquisition, such as OsNAS1, OsNAS3, OsIRT1, OsFDH, OsAPT1, and IDS3
- OsIRT1, OsNAS1, Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants, Sequences similar to the OsIRO2-binding sequence were found upstream of several genes that are involved in Fe acquisition, such as OsNAS1, OsNAS3, OsIRT1, OsFDH, OsAPT1, and IDS3
- FDH, OsNAS1, Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants, Sequences similar to the OsIRO2-binding sequence were found upstream of several genes that are involved in Fe acquisition, such as OsNAS1, OsNAS3, OsIRT1, OsFDH, OsAPT1, and IDS3
- OsIRO2~OsbHLH056, OsNAS1, A receptor-like protein RMC is involved in regulation of iron acquisition in rice, Several Fe deficiency-responsive genes including OsDMAS1, OsNAS1, OsNAS2, OsNAAT1, OsIRT1, OsYSL15, and OsIRO2 were up- and downregulated in OsRMC-overexpressing and RNAi plants compared with WT rice plants
- OsIRT1, OsNAS1, A receptor-like protein RMC is involved in regulation of iron acquisition in rice, Several Fe deficiency-responsive genes including OsDMAS1, OsNAS1, OsNAS2, OsNAAT1, OsIRT1, OsYSL15, and OsIRO2 were up- and downregulated in OsRMC-overexpressing and RNAi plants compared with WT rice plants
- OsNAAT1, OsNAS1, A receptor-like protein RMC is involved in regulation of iron acquisition in rice, Several Fe deficiency-responsive genes including OsDMAS1, OsNAS1, OsNAS2, OsNAAT1, OsIRT1, OsYSL15, and OsIRO2 were up- and downregulated in OsRMC-overexpressing and RNAi plants compared with WT rice plants
- OsNAS1, OsRMC~OsRLK, A receptor-like protein RMC is involved in regulation of iron acquisition in rice, Several Fe deficiency-responsive genes including OsDMAS1, OsNAS1, OsNAS2, OsNAAT1, OsIRT1, OsYSL15, and OsIRO2 were up- and downregulated in OsRMC-overexpressing and RNAi plants compared with WT rice plants
- OsNAS1, OsYSL15, A receptor-like protein RMC is involved in regulation of iron acquisition in rice, Several Fe deficiency-responsive genes including OsDMAS1, OsNAS1, OsNAS2, OsNAAT1, OsIRT1, OsYSL15, and OsIRO2 were up- and downregulated in OsRMC-overexpressing and RNAi plants compared with WT rice plants
- OsNAS1, OsNAS2, A receptor-like protein RMC is involved in regulation of iron acquisition in rice, Several Fe deficiency-responsive genes including OsDMAS1, OsNAS1, OsNAS2, OsNAAT1, OsIRT1, OsYSL15, and OsIRO2 were up- and downregulated in OsRMC-overexpressing and RNAi plants compared with WT rice plants
- OsNAS1, OsNAS3, Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron, Here, we show that three rice NA synthase (NAS) genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of Fe and that the three genes are differentially regulated by Fe
- OsNAS1, OsNAS3, Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron, Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron
- OsNAS1, OsNAS2, Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron, Here, we show that three rice NA synthase (NAS) genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of Fe and that the three genes are differentially regulated by Fe
- OsNAS1, OsNAS2, Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron, OsNAS1 and OsNAS2 transcripts were detected in Fe-sufficient roots but not in leaves, and levels of both increased markedly in both roots and leaves in response to Fe deficiency
- OsNAS1, OsNAS2, Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron, Promoter-GUS analysis revealed that OsNAS1 and OsNAS2 were expressed in Fe-sufficient roots in companion cells and pericycle cells adjacent to the protoxylem
- OsNAS1, OsNAS2, Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron, With Fe deficiency, OsNAS1 and OsNAS2 expression extended to all root cells along with an increase in phytosiderophore secretion
- OsNAS1, OsNAS2, Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron, In Fe-deficient plants, OsNAS1 and OsNAS2 were expressed in the vascular bundles of green leaves and in all cells of leaves showing severe chlorosis
- OsNAS1, OsNAS2, Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron, Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron
- IDEF1, OsNAS1, The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes, Time-course expression analyses using quantitative reverse-transcriptase PCR revealed that the IDEF1 expression level was positively correlated with the level of induction of the Fe utilization-related genes OsIRO2, OsYSL15, OsIRT1, OsYSL2, OsNAS1, OsNAS2, OsNAS3 and OsDMAS1, just after the onset of Fe starvation
- OsNAS1, OsNAS3, The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes, Time-course expression analyses using quantitative reverse-transcriptase PCR revealed that the IDEF1 expression level was positively correlated with the level of induction of the Fe utilization-related genes OsIRO2, OsYSL15, OsIRT1, OsYSL2, OsNAS1, OsNAS2, OsNAS3 and OsDMAS1, just after the onset of Fe starvation
- OsIRO2~OsbHLH056, OsNAS1, The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes, Time-course expression analyses using quantitative reverse-transcriptase PCR revealed that the IDEF1 expression level was positively correlated with the level of induction of the Fe utilization-related genes OsIRO2, OsYSL15, OsIRT1, OsYSL2, OsNAS1, OsNAS2, OsNAS3 and OsDMAS1, just after the onset of Fe starvation
- OsIRT1, OsNAS1, The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes, Time-course expression analyses using quantitative reverse-transcriptase PCR revealed that the IDEF1 expression level was positively correlated with the level of induction of the Fe utilization-related genes OsIRO2, OsYSL15, OsIRT1, OsYSL2, OsNAS1, OsNAS2, OsNAS3 and OsDMAS1, just after the onset of Fe starvation
- OsNAS1, OsNAS2, The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes, Time-course expression analyses using quantitative reverse-transcriptase PCR revealed that the IDEF1 expression level was positively correlated with the level of induction of the Fe utilization-related genes OsIRO2, OsYSL15, OsIRT1, OsYSL2, OsNAS1, OsNAS2, OsNAS3 and OsDMAS1, just after the onset of Fe starvation
- OsNAS1, OsYSL15, The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes, Time-course expression analyses using quantitative reverse-transcriptase PCR revealed that the IDEF1 expression level was positively correlated with the level of induction of the Fe utilization-related genes OsIRO2, OsYSL15, OsIRT1, OsYSL2, OsNAS1, OsNAS2, OsNAS3 and OsDMAS1, just after the onset of Fe starvation
- OsNAS1, OsYSL2~CF1, The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes, Time-course expression analyses using quantitative reverse-transcriptase PCR revealed that the IDEF1 expression level was positively correlated with the level of induction of the Fe utilization-related genes OsIRO2, OsYSL15, OsIRT1, OsYSL2, OsNAS1, OsNAS2, OsNAS3 and OsDMAS1, just after the onset of Fe starvation
- OsNAS1, OsRab6a, A Small GTPase, OsRab6a, Is Involved in the Regulation of Iron Homeostasis in Rice, Exposure to Fe-deficient medium led to up-regulation of OsIRO2, OsIRT1, OsNAS1 and OsNAS2 in both wild-type and the transgenic rice plants, with the magnitude of up-regulation positively correlated with the expression levels of OsRab6a
Prev Next