- Information
- Symbol: OsWRKY76
- MSU: LOC_Os09g25060
- RAPdb: Os09g0417600
- Publication
- OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus, 2013, Plant Mol Biol.
- WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance, 2013, J Exp Bot.
- The WRKY Gene Family in Rice Oryza sativa, 2007, J Integr Plant Biol.
- Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense, 2016, Plant Physiology.
- Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice., 2017, Sci Rep.
- The CC-NB-LRR OsRLR1 mediates rice disease resistance through interaction with OsWRKY19, 2020, Plant Biotechnol J.
- OsWRKY62 and OsWRKY76 Interact with Importin 伪1s for Negative Regulation of Defensive Responses in Rice Nucleus., 2022, Rice (N Y).
- OsWRKY76 positively regulates drought stress via OsbHLH148-mediated jasmonate signaling in rice., 2023, Front Plant Sci.
- Genbank accession number
- Key message
- These results strongly suggest that OsWRKY76 plays dual and opposing roles in blast disease resistance and cold tolerance
- The expression of OsWRKY76 was induced within 48h after inoculation with rice blast fungus (Magnaporthe oryzae), and by wounding, low temperature, benzothiadiazole, and abscisic acid
- OsWRKY76 encodes a group IIa WRKY transcription factor of rice
- Microarray analysis revealed that overexpression of OsWRKY76 suppresses the induction of a specific set of PR genes and of genes involved in phytoalexin synthesis after inoculation with blast fungus, consistent with the observation that the levels of phytoalexins in the transgenic rice plants remained significantly lower than those in non-transformed control plants
- Furthermore, overexpression of OsWRKY76 led to the increased expression of abiotic stress-associated genes such as peroxidase and lipid metabolism genes
- The expression analyses of the group IIa WRKY transcription factors in rice revealed that OsWRKY28, together with OsWRKY71, exhibit an early-induced expression prior to the late-induced expressions of OsWRKY62 and OsWRKY76
- Metabolomic and transcriptomic approaches were used to dissect the enhanced disease resistance in the plants harbouring a RNA interfering construct of OsWRKY62 and OsWRKY76 (dsOW62/76) genes
- Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice.
- Salicylic acid (SA) and jasmonic acid (JA)/JA-Ile contents were increased in dsOW62/76 and knockout lines of individual OsWRKY62 and OsWRKY76 genes
- These results indicate that OsWRKY62 and OsWRKY76 function as negative regulators of biosynthetic defense-related metabolites and provide evidence for an important role of phenylpropanoid pathway in SA production in rice
- OsWRKY76 positively regulates drought stress via OsbHLH148-mediated jasmonate signaling in rice.
- Here, OsWRKY76 positively regulated drought stress in rice
- Notably, OsWRKY76 knockout weakened drought tolerance at the seedling stage and decreased MeJA sensitivity
- Yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays showed that OsWRKY76 and OsbHLH148 bound directly to the OsDREB1E promoter and activated OsDREB1E expression in response to drought stress
- These results suggest that OsWRKY76 confers drought tolerance through OsbHLH148-mediated jasmonate signaling in rice, offering a new clue to uncover the mechanisms behind drought tolerance
- The OsJAZ12 protein repressed the transactivation activity of OsbHLH148, and this repression was partly restored by OsWRKY76 in rice protoplasts
- Connection
- OsWRKY62, OsWRKY76, OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus, The expression analyses of the group IIa WRKY transcription factors in rice revealed that OsWRKY28, together with OsWRKY71, exhibit an early-induced expression prior to the late-induced expressions of OsWRKY62 and OsWRKY76
- OsWRKY28, OsWRKY76, OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus, The expression analyses of the group IIa WRKY transcription factors in rice revealed that OsWRKY28, together with OsWRKY71, exhibit an early-induced expression prior to the late-induced expressions of OsWRKY62 and OsWRKY76
- OsWRKY71, OsWRKY76, OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus, The expression analyses of the group IIa WRKY transcription factors in rice revealed that OsWRKY28, together with OsWRKY71, exhibit an early-induced expression prior to the late-induced expressions of OsWRKY62 and OsWRKY76
- OsWRKY62, OsWRKY76, Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense, In this study we discovered that two IIa subfamily of WRKY genes, OsWRKY62 and OsWRKY76, undergo constitutive and inducible alternative splicing
- OsWRKY62, OsWRKY76, Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense, The dsOW62/76 and knockout lines of OsWRKY62 and OsWRKY76 also showed greatly increased expressions of defense-related genes and accumulation of phytoalexins
- OsWRKY62, OsWRKY76, Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense, The N-termini of OsWRKY62 and OsWRKY76 splice variants also showed reduced binding to the canonical W box motif
- OsWRKY62, OsWRKY76, Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice., Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice.
- OsWRKY62, OsWRKY76, Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice., Metabolomic and transcriptomic approaches were used to dissect the enhanced disease resistance in the plants harbouring a RNA interfering construct of OsWRKY62 and OsWRKY76 (dsOW62/76) genes
- OsWRKY62, OsWRKY76, Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice., Salicylic acid (SA) and jasmonic acid (JA)/JA-Ile contents were increased in dsOW62/76 and knockout lines of individual OsWRKY62 and OsWRKY76 genes
- OsWRKY62, OsWRKY76, Metabolic and transcriptional alternations for defense by interfering OsWRKY62 and OsWRKY76 transcriptions in rice., These results indicate that OsWRKY62 and OsWRKY76 function as negative regulators of biosynthetic defense-related metabolites and provide evidence for an important role of phenylpropanoid pathway in SA production in rice
- OsWRKY62, OsWRKY76, OsWRKY62 and OsWRKY76 Interact with Importin 伪1s for Negative Regulation of Defensive Responses in Rice Nucleus., OsWRKY62 and OsWRKY76 Interact with Importin 伪1s for Negative Regulation of Defensive Responses in Rice Nucleus.
- OsWRKY62, OsWRKY76, OsWRKY62 and OsWRKY76 Interact with Importin 伪1s for Negative Regulation of Defensive Responses in Rice Nucleus., Background OsWRKY62 and OsWRKY76, two close members of WRKY transcription factors, function together as transcriptional repressors
- OsWRKY62, OsWRKY76, OsWRKY62 and OsWRKY76 Interact with Importin 伪1s for Negative Regulation of Defensive Responses in Rice Nucleus., What are the regulatory factors for OsWRKY62 nuclear translocation? Results In this study, we characterized the interaction of OsWRKY62 and OsWRKY76 with rice importin, OsIM伪1a and OsIM伪1b, for nuclear translocation
- OsWRKY62, OsWRKY76, OsWRKY62 and OsWRKY76 Interact with Importin 伪1s for Negative Regulation of Defensive Responses in Rice Nucleus., OsWRKY62, OsWRKY76, and AvrPib effector translocate to nucleus in association with importin 伪1s through new types of nuclear localization signals for negatively regulating defense responses
- alpha1a~OsIMalpha1a, OsWRKY76, OsWRKY62 and OsWRKY76 Interact with Importin α1s for Negative Regulation of Defensive Responses in Rice Nucleus, OsWRKY62 and OsWRKY76 Interact with Importin α1s for Negative Regulation of Defensive Responses in Rice Nucleus
- OsIMalpha1b, OsWRKY76, OsWRKY62 and OsWRKY76 Interact with Importin α1s for Negative Regulation of Defensive Responses in Rice Nucleus, OsWRKY62 and OsWRKY76 Interact with Importin α1s for Negative Regulation of Defensive Responses in Rice Nucleus
- OsWRKY63, OsWRKY76, The OsWRKY63-OsWRKY76-OsDREB1B module regulates chilling tolerance in rice., Molecular, biochemical, and genetic assays showed that OsWRKY76 is a direct target gene of OsWRKY63 and that its expression was suppressed by OsWRKY63
- OsbHLH148, OsWRKY76, OsWRKY76 positively regulates drought stress via OsbHLH148-mediated jasmonate signaling in rice., OsWRKY76 weakened the interaction between OsbHLH148 and OsJAZ12 in yeast cells
- OsbHLH148, OsWRKY76, OsWRKY76 positively regulates drought stress via OsbHLH148-mediated jasmonate signaling in rice., The OsJAZ12 protein repressed the transactivation activity of OsbHLH148, and this repression was partly restored by OsWRKY76 in rice protoplasts
- OsbHLH148, OsWRKY76, OsWRKY76 positively regulates drought stress via OsbHLH148-mediated jasmonate signaling in rice., Yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays showed that OsWRKY76 and OsbHLH148 bound directly to the OsDREB1E promoter and activated OsDREB1E expression in response to drought stress
- OsDREB1E~OsDREB1-1~CR350, OsWRKY76, OsWRKY76 positively regulates drought stress via OsbHLH148-mediated jasmonate signaling in rice., Yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays showed that OsWRKY76 and OsbHLH148 bound directly to the OsDREB1E promoter and activated OsDREB1E expression in response to drought stress
- OsJAZ12~OsTIFY11d, OsWRKY76, OsWRKY76 positively regulates drought stress via OsbHLH148-mediated jasmonate signaling in rice., Yeast two-hybrid and bimolecular fluorescence complementation assays showed that OsWRKY76 interacted with OsJAZ12
- OsJAZ12~OsTIFY11d, OsWRKY76, OsWRKY76 positively regulates drought stress via OsbHLH148-mediated jasmonate signaling in rice., OsWRKY76 weakened the interaction between OsbHLH148 and OsJAZ12 in yeast cells
- OsJAZ12~OsTIFY11d, OsWRKY76, OsWRKY76 positively regulates drought stress via OsbHLH148-mediated jasmonate signaling in rice., The OsJAZ12 protein repressed the transactivation activity of OsbHLH148, and this repression was partly restored by OsWRKY76 in rice protoplasts
Prev Next